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Abstract 

Southeastern South America (SESA) rainfall presents large variability from interannual to multidecadal times 

scales and is influenced by the tropical Pacific, Atlantic and Indian oceans. At the same time, these tropical 

oceans interact among them inducing sea surface temperature anomalies in remote basins through atmospheric 

and oceanic teleconnections.  

 

In this study we employ a tool from complex network theory to analyze the collective influence of the three 

tropical oceans on austral spring time precipitation over SESA during the 20th century. We construct a climate 

network considering as nodes the observed Niño3.4, Tropical North Atlantic (TNA), and Indian Ocean Dipole 

(IOD) indices, together with an observed or simulated precipitation (PCP) index over SESA. The mean 

network distance is considered as a measure of synchronization among all these phenomena during the 20
th
 

century.  

 

This approach allowed to detect two main synchronization periods characterized by different interactions 

among the nodes. In particular, the network’s nodes that influenced SESA precipitation changed with time. 

Whereas in the '30s El Niño and the TNA were the main tropical oceanic phenomena that influenced SESA 

precipitation variability, during the '70s they were El Niño and the IOD.  The use of model simulations also 

allowed to hypothesize the physical mechanism that characterized the interaction among the nodes in the 

synchronization period. 
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1) INTRODUCCIÓN 

 

Southeastern South America (SESA) rainfall variability is influenced by the tropical Pacific, Atlantic and 

Indian oceans (e.g., Grimm et al., 2000; Barreiro et al., 2010; Yulaeva and Wallace 1994; Silvestri 2004; Mo 

and Berbery 2011; Chan et al., 2008). At the same time, these tropical oceans interact among them inducing 

sea surface temperature anomalies in remote basins through atmospheric and oceanic teleconnections (e.g., 

Enfield and Mayer 1997; Saravannan et al., 2000; Yoo et al., 2013; Annamalai et al., 2003; Wang and Wang 

2014). However, nowadays it is not fully understood how these SST anomalies in remote basins interact 

collectively to influence rainfall variability over SESA and neither how the interaction among the oceans and 

their influence on SESA precipitation had varied during the last century.  

  

Considering the interaction among oceans and their influence on SESA precipitation variability, we construct 

a climate network following the methodology of Tsonis et al. (2007) and taking different indices that 



characterize the tropical oceans: El Niño/Southern Oscillation (Niño3.4), the Tropical North Atlantic (TNA), 

and the Indian Ocean Dipole (IOD) as well as an index that characterizes precipitation over SESA (PCP) as 

network’s nodes (see Figure 1). We investigate the collective behavior of the network focusing on detection of 

synchronization events (when the network’s nodes are most connected) and how this ‘collective-behavior’ has 

evolved with time. The synchronization events are defined considering the mean distance of cross – 

correlation. Thus, this methodology allows to detect periods when the tropical oceans are more connected and 

active in influencing rainfall over SESA.  

2) DATA AND METHODOLOGY  

 

2.1. Data 

 

We compute the different tropical oceanic indices considering the monthly mean SST data from 1901 to 2005 

from ERSSTv3b dataset (Extended Reconstructed Sea Surface Temperature; Smith et al., 2008; and Xue et 

al., 2003) with a resolution of 2º x 2º. The Precipitation index is calculated using the monthly mean observed 

data during the same period mentioned above from the GPCCv5 dataset (Global Precipitation Climatology 

Center; Schneider et al., 2011) with a resolution of 1º x 1º. 

 

On the other hand, we also consider the simulated precipitation field from an AGCM forced with observed 

SST. In particular, we use the ICTP-AGCM (Kucharski et al., 2006; Molteni F 2003) and construct an 

ensemble of 9 runs initializing the model with different atmospheric conditions, but all having the same SST 

as boundary conditions. The precipitation index is considered as the ensemble mean precipitation over the 

region of interest (see Figure 1) and by construction it will mainly represent the oceanic-forced rainfall 

variability. 

 

Considering these two types of data we construct two climate networks with the same nodes (represented on 

Figure 1), but using different types of dataset. In one case we consider observations (the SST from ERSSTv3b 

and the PCP from GPCCv5), and on the other hand we consider the simulated SST and precipitation data from 

ICTP-AGCM’s outputs. Latter is forced with SST from ERSSTv2. Smith et al., (2008) showed that ERSSTv2 

and ERSSTv3 are very similar, and therefore, the main difference in the networks constructed from observed 

and model data arises due to differences in the evolution of precipitation. We will see below that the network 

constructed with simulated rainfall can reproduce the observed synchronization and therefore the model’s 

output will allow to study the global circulation anomalies in each synchronization period.  

 

Figure 1. Regions that represents the climate indices: Indian Ocean Dipole (IOD) over the Indian Ocean, Niño3.4 over 

the central equatorial Pacific Ocean, the Tropical North Atlantic (TNA) and the precipitation over Southeaster South 

America (PCP). 



2.2. Methodology 

 

The methodology consists in several steps: 

First, we compute the climate indices by latitudinal and longitudinally averaging SST and precipitation in the 

different regions considered (Figure 1). We also eliminate the trend of the time series and compute the 

monthly anomalies removing the climatological cycle from 1901 to 2005. The indices are normalized. 

 

Second, we consider individual trimesters to construct the networks: September – November (SON) for the 

case of El Niño index and October – December (OND) for the rest of the indices (TNA, IOD and PCP). 

Therefore, the time series have 105 values, one per year.  

SESA precipitation in OND shows large variability on different time scales including interannual to 

interdecadal (Seager et al., 2010). Also, it is during this season when the teleconnection between Niño3.4 and 

SESA precipitation is well established and when the IOD takes place and influences SESA precipitation 

variability (Barreiro et al., 2010; Li et al., 2003 and Chan et al., 2008). ENSO could induce the SST 

anomalies in other tropical basins with a lag that varies from 1 to several months. Thus, we 

established a lag of one month between the Niño3.4 index and the rest of the network nodes to allow 

the Atlantic and Indian Oceans to respond to the atmospheric anomalies generated from the 

equatorial Pacific.  

 

Third, following the methodology of Tsonis et al. (2007) we construct the network considering the mean 

network distance as synchronization measure.  Mathematically, the mean network distance is defined as: 
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where t denotes the time in the middle of a sliding window of width Δt=11 years, N represents the  number of 

network's nodes (in this case, 4) and 
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 ]. The time step for the sliding window is 1 year. The mean network distance as a measure of 

synchronization is useful to study and describe the variations in the network's topology. Note that the network 

is completely synchronized when the distance is zero and disconnected when the distance is 2  

(uncorrelated nodes).  

 

Fourth, to compute the statistical significance of the mean network distance we consider the Montecarlo 

method employing the following criterion: we first compute the autocorrelation coefficient at lag 1 year of 

each index (remember that each index has one value per year and represents the seasonal mean), and consider 

as red noise those with autocorrelation coefficient significant at 95% level in one-tailed t-test (white noise in 

the opposite case). Following this criterion, only the TNA can be considered as red noise, while the rest of the 

indices are white noise. Then, we generate 1000 surrogate time series of each index under these null 

hypotheses and compute the network distance time series considering a sliding window of 11-years length, as 

done for the observed indices. In this way, we construct 1000 surrogate time series of the mean network 

distance, which allows determining the 5% level. We consider that there is a statistically significant 

synchronization event when the mean network distance is below this threshold.  

 

 

 

 



3) NETWORK’S TOPOLOGY  

The network’s topology is studied using the mean network distance time series plotted in Figure 2. The dot 

and shaded black curve represent the mean network distance computed from observed data (ERSSTv3b and 

GPCCv5), considering Pearson and Spearman correlation coefficient in equation (1), respectively. The 

horizontal black line is the threshold level. We found that the network distance is very similar independently 

on the correlation used except during the last decade of the 20
th
 century, when the network distance computed 

with Spearman correlation does not show statistically significant synchronization among the network’s nodes 

(Figure 2). This period includes the strong El Niño of 1997 which acts as an outlier strongly influencing 

Pearson correlation. The similarity in the evolution of both network distances during the first 90 years of the 

last century suggests that Pearson correlation is a valid measure of interdependence to represent climate 

teleconnections, and our study will be based on this correlation coefficient. 

 

Figure 2. Network distance computed considering Spearman rank (continue line) and Pearson (shaded line) correlations 

coefficients from ERSSTv3b indices. For each time step, the network distance is calculated considering the definition 

given by Tsonis et al., (2007) and a sliding window of 11 years length. El Niño index in centered on September-October-

November (SON), and the rest of the indices on October-November-December (OND). 

 

3.1 Variability of the network distance and synchronization periods. 

 

Figure 3 shows the mean network distance computes considering observed and simulated indices, blue and 

green curves respectively (observed indices from ERSSTv3b and GPCCv5, and simulated indices from the 

ICTP-AGCM’s outputs). The network distance is characterized by interannual and interdecadal variability, 

existing three periods in which the observed (blue curve) and simulated (green curve) network distances 

evolve similarly and present synchronization (mean network distance under the threshold level, Figure 3). 

Focusing on the observed network distance (blue curve) it is possible to distinguish that the first period occurs 

from 1933 to 1945 and the second period covers 1966-1978. The last synchronization period (during the ‘90s) 

will not be considered since the mean network distance computed using the Spearman correlation does not 

show synchronization among the network’s components (Figure 2, black line).  

Overall, looking at Figure 3, the time behavior of the network distance calculated using simulated rainfall 

(green curve) tends to follow the one constructed with observed rainfall (blue curve). However, while there 

are periods in which the amplitude of the simulated network distance (green curve) is very similar to that 



using observations (blue curve), as can be first synchronization period, there are others in which this is not the 

case (for example, the second synchronization period). As noted before, the main difference between the 

observed (blue curve) and simulated (green curve) network distances should arise due to the precipitation 

index. Whereas in the simulated case the precipitation index contains mainly the oceanically-forced 

component, the observed precipitation index contains both, the internal variability and oceanically-forced 

signals. Moreover, model biases may also induce differences between observed and simulated precipitation.  

To further analyze the representation of the network distance by the model (green curve), we compute the 

network distance for each one of the 9 precipitation ensemble members of the experiment and define a 

confidence interval given by the maximum and minimum values for each 11 years window (grey region on 

Figure 3). Focusing on the ERSSTv3b-network distance (blue curve on Figure 3), overall the observed 

network distance falls within the confidence interval except during the first synchronization period, but even 

then, it is possible to see that the observed and ensemble-mean simulated network distances are very close to 

each other. A similar situation occurs during 1957-1962. The only point where the behavior could be 

considered different is 1923 when the observed network distance is out of the confidence interval and does not 

coincide with the simulated network distance.  In any case, it is only one point and one that is not that 

important for our study because is not within a synchronization period.  

 

Figure 3. Simulated confidence interval for the network distance time series from 1901 to 2006. The blue and green 

curves represent the observed and simulated network distance time series respectively. The observed network distance is 

calculated using SST and PCP from ERSSTv3b and GPCC, respectively to compute the indices. The simulated network 

distance is obtained considering the SST and PCP from the ICTP-AGCM’s outputs. Latter PCP index is the ensemble 

mean of 9 different experiments. 

Figure 3 also shows that in the first (and second) synchronization period the magnitude of the simulated 

network distance (green line) is just outside the confidence interval, suggesting that large internal atmospheric 

variability within the ensemble is filtered out in the average procedure.  By construction, the simulated 

network distance (green line) can stay inside or under the confidence interval, but never above. This is 

because the ensemble mean precipitation index has filtered most of the internal atmospheric variability signal, 

which would act as noise in the PCP time series decreasing in average the cross-correlation between the PCP 

index and any of the oceanic indices.  

Therefore, the network constructed with simulated rainfall can reproduce the observed synchronization and 

the model’s output will allow to study the global circulation anomalies in each synchronization period. 



 

3.2 Node connection during synchronizations. 

 

Up to this point we have found that during the 20
th
 century there were two synchronization periods: (1933-

1945) and (1966-1978). The following step is to determine which nodes had an important role in the network 

during each period. To address this issue, we compute the Pearson correlation coefficients between each pair 

of network’s nodes (Niño-TNA, Niño-PCP, TNA-PCP, IOD-PCP and TNA-IOD) during each 

synchronization period using model simulations. We checked the statistical significance considering the 95% 

level in a Monte Carlo Method based on the generation of 10000 surrogate time series.  

During the ‘30s, Niño3.4 is connected to all the rest of the nodes and there is a link between PCP and TNA 

(correlation values computed not shown). During the ‘70s, Niño3.4 is also connected to all the nodes, but the 

link PCP becomes connected to the IOD (correlation values computed not shown). From the point of view of 

precipitation over SESA, during the ‘30s the equatorial Pacific and the tropical north Atlantic dominated the 

oceanically-forced component of the variability. On the other hand, during the ‘70s the TNA does not play a 

role, and the Indian ocean becomes connected to rainfall over SESA, in addition to the Pacific. This result can 

also be observed in Figures  4 (a) and (c), which represent the correlation map between the PCP index and the 

sea surface temperature anomalous field in each synchronization period, indicating the regions of the ocean 

that influence rainfall variability over Southeastern South America. 

 

Figure 4. Correlation maps between precipitation index (OND) and the sea surface temperatures anomalies centered on 

OND: (A) in the 30s and (C) in the 70s. Partial cross correlation maps between precipitation index (OND) and the sea 

surface temperatures anomalies centered on OND maintaining El Niño3.4 index (SON) constant:  (B) in the 30s and (D) 

in the 70s in the 90s. These maps were computed considering ICTP-AGCM output. Shown values exceed 95% level of 

confidence from one tailed t-test. 

In the following section we hypothesize the possible physical mechanisms that characterized the interaction 

among the nodes of the network important for rainfall over SESA based on the literature. We employ the 

ICTP-AGCM's output since as we saw, this model reproduces well the observations and allows to better 

characterize the oceanically-forced atmospheric circulation anomalies. 

 



4) DISCUSSION 

4.1. Period (1933-1945). 

The oceanic nodes that had an important role on rainfall variability during the period 1933-1945 are Niño3.4, 

the Tropical North Atlantic (TNA). 

There are two different processes through which a warm anomaly in the equatorial Pacific can influence the 

TNA: a weakening of the trades which decreases the oceanic heat loss (e.g. Enfield and Mayer, 1997) and the 

tropospheric temperature warming bridge (Chiang and Sobel, 2002). The regression maps onto Niño3.4 show 

a small warming of the tropical north Atlantic accompanied by weak decreased trades (Figures 5 (a) and (c)). 

The small TNA response might be consequence of the small lag time allowed for the ocean response (1 

month), instead of a typical scale of one season (e.g. Enfield and Mayer, 1997; Saravanan et al., 2000). 

 

Figure 5. Regression map of the El Niño3.4 index (centered on SON) with: (a) sea surface temperatures anomalies, (b) 

geopotential height 300mb (geopot300mb), (c): zonal wind anomalies in 850mb (u850) and (d) meridional wind in 

850mb (v850). The SST, geopot300, u850 and v850 are centered on OND. Period (1933-1945). Shaded regions represent 

values higher than 95% confidence level for one tailed t-test. Maps computed from the ICTP-AGCM outputs. 

The mechanisms through which El Niño influences SESA involve both upper and lower level atmospheric 

circulation anomalies. In upper levels the Rossby wave trains propagating from the equatorial Pacific increase 

the baroclinicity and the advection of cyclonic vorticity over the region (Yulaeva and Wallace, 1994; Grimm 

et al., 2000). This can be observed in the regression map of the geopotential height onto the El Niño3.4 index 

(Figure 5 (b)), which shows the presence of a through-ridge system over subtropical South America. At the 

same time, in lower levels there is an increase of the northerly transport of moisture into the region because of 

a strengthening of the southward wind (Figure 5 (d), in agreement with Silvestri, 2004). The combination of 

these two factors favors an increase of the precipitation over SESA.  

Regarding the interaction between the TNA and PCP, it is important to note that the correlation is 

approximately 0.9, larger than between PCP and Niño3.4. Also even when El Niño signal is removed (Figure 

4 (b)), the SST anomaly in the TNA is still significantly correlated with rainfall over SESA. This suggests that 

the link between TNA and PCP is direct and that the SST anomalies in the TNA cannot be completely 

explained by ENSO forcing. To look at the influence of TNA directly onto SESA we performed partial 

regression maps of geopotential height in 300mb and meridional wind in 850mb onto the TNA index 

maintaining Niño3.4 index constant (Figures not shown). We found that in upper levels the geopotential 

height shows a through over SESA favoring the ascent motions over this region. At the same time, in lower 



levels there is an increase of the southward winds, and therefore, of the northerly transport of moisture. 

However, the changes in the meridional wind component and the advection of cyclonic vorticity over the 

region are not significant and further work is needed to understand the influence of the TNA on rainfall over 

SESA.  

4.2. Period (1966-1978). 

In this case, the oceanic nodes that had an important role on rainfall variability are the Niño3.4 and the Indian 

Ocean Dipole.  

The interaction between El Niño and the precipitation over SESA is similar to the previous case since the two 

favorable conditions to the increase of the precipitation over the region of study are present again (Figures 6 

(b) and (d)).  

In this period the Indian Ocean Dipole appears like an important network's node, having a significantly link 

with the precipitation over Southeastern South America (Figure 4 (c)). This link would suggest an influence of 

the Indian Ocean to the rainfall over SESA. However the partial cross - correlation map between the 

precipitation index and the sea surface temperatures field maintaining the El Niño3.4 index constant (Figure 4 

(d)), shows that the correlation between the PCP and SST over the Indian Ocean becomes not significant, 

suggesting that the appearance of this link could be due to the fact that both nodes have a common forcing: El 

Niño. Another possibility is that the Indian Ocean warming, as consequence of the Pacific forcing, influenced 

the rainfall over SESA through the eastward propagation of  Rossby waves, mechanism already proposed by 

Saji et al., (2005) and Chan et al., (2008). In fact, the regression map of 300mb geopotential height shows 

significant anomalies in the southeastern Indian Ocean and the extratropical atmosphere (Figure 6 (b)) that 

were barely present in the ‘30s (Figure 5 (b)). These Rossby wave trains may interact with the Rossby wave 

train forced by the tropical Pacific, and together may favor better conditions for increased precipitation over 

SESA (in agreement with the previous works of Saji et al., (2005) and Chan et al., (2008)). 

The connection between both oceans (equatorial Pacific and Indian) is established through anomalous winds 

(Wang and Wang, 2014). During the 70s, the regression map of the Niño3.4 index and the 850mb zonal wind 

(Figure 6(c)) shows negative anomalies of the zonal wind over the western shore of Sumatra that favors 

upwelling and contributes to decreasing the SST, and positive anomalies over the Arabian Sea and Bay of 

Bengal facilitating the homogeneous increase of the SST there. Nevertheless, during this period the Indian 

Ocean warms rather homogeneously presenting a weak east-west SST gradient (Figure 6 (a)).  

 



Figure 6. Regression map of the El Niño3.4 index (centered on SON) with: (a) sea surface temperatures anomalies, (b) 

geopotential height 300mb (geopot300mb), (c) zonal wind anomalies in 850mb (u850) and (d) meridional wind in 850mb 

(v850). The SST, geopot300, u850 and v850 are centered on OND. Period (1966-1978). Shaded regions represent values 

higher than 95% confidence level for one tailed t-test. Maps computed from the ICTP-AGCM outputs. 

5) SUMMARY 

Following the methodology of Tsonis et al., (2007) we have constructed a network considering as nodes three 

oceans indices that characterize the interannual variability of the tropical oceans (Niño3.4, IOD and TNA) as 

well as an index that characterizes the precipitation over Southeastern South America (PCP). We studied the 

network’s topology and the collective behavior of the nodes through the detection of synchronization events 

considering the mean network distance as a measure of synchronization among the nodes. 

The main results of the study are as follows: 

Overall, we were able to show that the network distance presents interannual and interdecadal variability and 

that there were the two synchronizations periods during the last century. The first is from 1933 to 1945 (30s) 

and the second covers 1966-1978 (70s). A third potential synchronization period was detected during the ‘90s, 

but depends on the correlation measured used and is not further studied. 

The connectivity among the nodes in the network changed with time. Moreover, whereas in the first 

synchronization period the nodes which influence SESA precipitation were El Niño and the TNA, in the 

second period were El Niño and the IOD. 

During the two synchronization periods El Niño phenomenon increases the precipitation over Southeastern 

South America. This result is in agreement with previous studies and might be understood through an increase 

of the northerly transport of moisture in lower levels and the advection of cyclonic vorticity in upper levels (in 

agreement with Silvestri et al., (2004), Yulaeva and Wallace, (1994) and Grimm et al., (2000)). 

Regarding the interaction between the TNA and PCP during the 30s, it is important to note that even after El 

Niño signal is removed, the TNA is significantly correlated with rainfall over SESA. This suggests that the 

link between TNA and PCP is direct and the SST anomalies in the TNA cannot be completely explained by 

ENSO forcing.  

There are two possible, not mutually exclusive ways, of interpreting the interaction between the IOD and PCP. 

One possibility is that the appearance of this link is due to the fact that both nodes (IOD and PCP) have a 

common forcing: El Niño. Another possibility is that the Indian Ocean warming influences rainfall over 

Southeastern South America through the eastward propagation of Rossby waves (in agreement Saji et al., 

(2005) and Chan et al., (2008)). This Rossby wave train could interact with the Rossby wave train forced by 

the tropical Pacific and together may favor better conditions for increased precipitation over SESA. 

Our results suggest a complex dynamics among the tropical oceans and their influence on rainfall over SESA 

that varies on interannual and interdecadal time scales. The complex network perspective used here has 

allowed to gain new insights in their collective behavior, and resulted in new questions that need to be 

addressed in future studies.  
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